Plasma/Spacecraft Charging Effects of Space Weather

Dr. Dale C. Ferguson
Co-chair, SEE Charging and EMI
Working Group
Feb. 9, 2000

- Solar activity affects all aspects of space environmental effects
 - micrometeoroids and debris
 - radiation belts
 - spacecraft charging & arcing
 - geomagnetic substorms
 - auroral activity
 - ionospheric plasma density and temperature
 - drag, etc.

- LEO Ionospheric Plasma Effects
 - − all bodies float slightly negative (~T_e)
 - conductors on solar arrays or distributed
 voltages float highly negative (~90% of system
 voltage), but insulators float near plasma pot.
 - dielectric layers can break down (arcs)
 - solar cells can arc from cell to coverslide surface or cell to cell
 - positive conductor surfaces can collect high currents from adjacent insulators (snapover)

- LEO high inclination orbit plasma effects
 - Auroral charging (a few kV)
 - disrupts plasma measurements by biasing instruments away from plasma ground
 - buries charge inside insulators, with eventual dielectric discharges
 - leads to arcs through differential charging on surfaces with widely different capacitances (V=Q/C)

- GEO Plasma Effects
 - not severe unless geomagnetic substorm
 - all surfaces charge highly negative (10's of kV)
 - differential charging can occur when surfaces charge to different amounts, or are differentially discharged
 - photoelectric effect
 - secondary electron emission
 - large differences in capacitance
 - arcs occur due to differential voltages (high E fields)
 - buried charge can lead to arcing

- Sustained Arcs (Super Arcs)
 - Initial arc due to spacecraft charging (>100 V)
 - Arc plasma reaches solar array strings or other surfaces more than ~50 V different
 - Initial arc evolves into sustained arc between spacecraft high voltage components
 - Arc will continue as long as current and voltage supply last - seconds or even minutes
 - Arc melts and destroys systems (like arc welder)

• Sustained Arc on EOS-AM1 (Terra) Q-Board

- GEO and Auroral Space Weather monitoring needs (priorities):
 - 1 Floating potential monitors (0 to -10 kV)
 - 2 Local charged particle flux and spectrum (100 eV to 100 keV)
 - 3 Solar UV and auroral emissions monitors
- LEO Space Weather monitoring needs:
 - 1 Local plasma density and temperature (N_e = 10⁴-10⁷ / cm³, T_e = 0.05-0.25 eV)
 - 2 Floating potential monitors (0 to -100 V)

- Charging/Plasma Space Weather advance warning needs (priorities):
 - 1 24 hr or greater geomagnetic substorm forecasts (arrival time, severity, probability of occurrence)
 - 2 traditional index monitoring and predictions of solar activity (R_Z , $f_{10.7}$, K_p , etc.)

- How is the SEE Charging/EMI Working Group planning to meet these needs?
 - We have our hands full with these tasks:
 - ISS Plasma Contactor monitoring software
 - Ground tests for arc thresholds and arc mitigation
 - Ground tests of spacecraft materials charging properties
 - Accurate, 3-D software to predict spacecraft charging under worst-case conditions
 - Simplified computer tools for spacecraft designers

- Instrumentation Needs to Support Our Customers:
 - Mass-produced, low mass "sensors-on-a-chip" on every (even commercial) satellite launched, to measure:
 - Vehicle "floating potential" relative to the plasma
 - Plasma collection current versus voltage to determine N_e and T_e
 - Langmuir probes or Solar Array collection currents
 - Internal charging within dielectrics
 - Data collection, handling and analysis capabilities for large constellations of instruments

- What can LWS do to meet our customers' needs?
 - Finance development, distribution, datacollection and analysis of the sensors-on-a-chip mentioned previously
 - Measure the remaining plasma/solar parameters in detail with its scientific satellites
 - Finance a dedicated "Living with a Star"
 Environmental Interactions program